UCT AI SOCIETY

INTRODUCTION TO LANGUAGE MODELLING: N-GRAM MODELS

Andrej Jovanović contact.me.maddox@gmail.com maddox-j.github.io

TODAY'S STRUCTURE

WHAT IS LANGUAGE MODELLING

N-Gram language models: theory and assumptions.

CODE-WITH-ME

Let's build.

FOOD FOR THOUGHT

What have we not considered?

WHAT IS A LANGUAGE MODEL?

IN THE MORNING, I DRINK SOME

FOR FUN, I _____

BUT! HOW DO WE TRANSFER THIS INTO SOME CONCRETE, MATHEMATICAL NOTION?

ROBABILITY ESTIMATION

P(*the*|*its water is so transparent that*)

P(the|its water is so transparent that) =C(its water is so transparent that the)

C(its water is so transparent that)

BREAKING IT DOU
PROBABILITY TH

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)}, \quad P(A) > 0$$

$$P(w_1 \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)}, \quad P(A) > 0$$

$$P(w_{1:n}) = P(w_1)P(w_{2:n}|w_1)$$

$$P(w_{1:n}) = P(w_1)P(w_2|w_2)P(w_2|w_2)P(w_2$$

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3)$$
$$= \prod_{k=1}^n P(w_k|w_{1:k-1})$$

JN WITH HEORY

 $(w_1, w_2, w_3, w_4, ..., w_n) = P(w_{1:n})$

 $(w_{3:n}|w_1, w_2)$

 $w_{1:2}$)... $P(w_n|w_{1:n-1})$

MARKOVIAN ASSUMPTIONS

 $P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})\dots P(w_n|w_{1:n-1})$ GLOBAL MODEL $= \prod P(w_k|w_{1:k-1})$ k=1

FIX A HISTORY

$P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-N+1:n-1})$

-GRAM MODEL $P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-1}) \quad P(w_{1:n}) \approx \prod P(w_k|w_{k-1})$

п k=1

MAXIMUM LIKELIHOOD ESTIMATION

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1})}{C(w_{n-1})}$$

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1})}{\sum_w C(w_n)}$$

PADDING!

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus of 9332 sentences. Zero probabilities are in gray.

Here are a few other useful probabilities:

 $\begin{array}{ll} P(\texttt{i}|<\texttt{s}>) = 0.25 & P(\texttt{english}|\texttt{want}) = 0.0011 \\ P(\texttt{food}|\texttt{english}) = 0.5 & P(\texttt{</s}|\texttt{food}) = 0.68 \end{array}$

P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

$$= .25 \times .33 \times .0011 \times 0.5 \times 0.68$$

.000031

nt) |food)

LET'S DO SOME CODING!

OTHER THINGS TO CONSIDER?

OOV WORDS?

 $P(w_{1:4}) = P(w_1| < s >) P(w_2|w_1) P(w_3|w_2) P(w_4|w_3) P(</s > |w_4)$

 $P(w_{1:4}) = a * b * c * 0 * e = 0$

NUMERICAL STABILITY

 $logP(w_{1:2}) = logP(w_1 | < s >) + logP(w_2 | w_1) + logP(</s > | w_2)$

REFERENCES

[1] Speech and Language Processing (3rd ed. draft) - Dan Jurafsky and James H. Martin https://web.stanford.edu/~jurafsky/slp3/